Two evolutionary paths of an axisymmetric gravitational instability in the dust layer of a protoplanetary disk

Fumiharu Yamoto

National Astronomical Observatory of Japan

Minoru Sekiya

Kyushu University

Contents

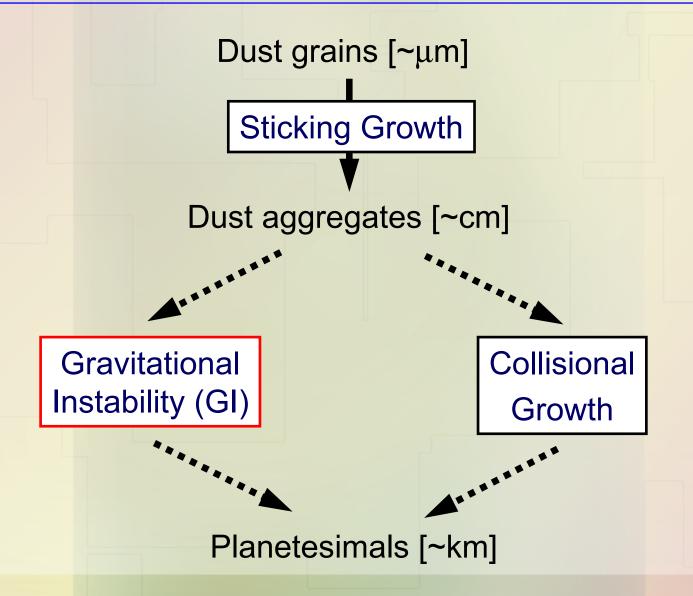
- 1. Introduction
- 2. Our Study

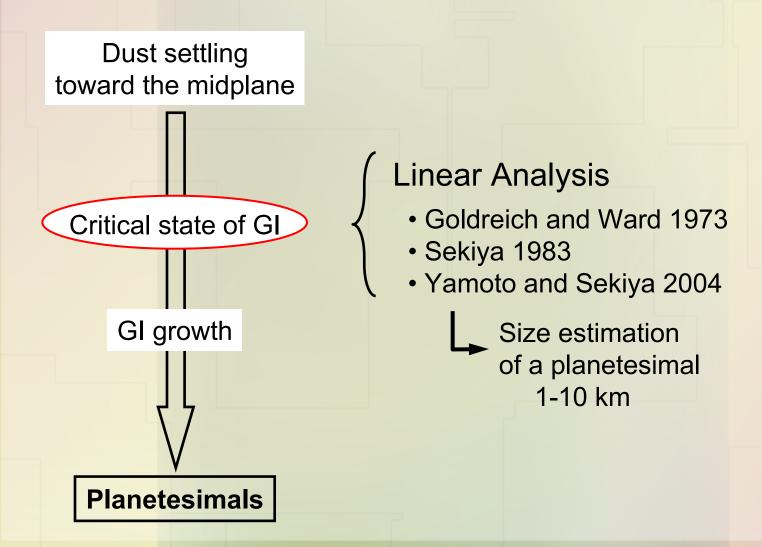
Numerical Simulations

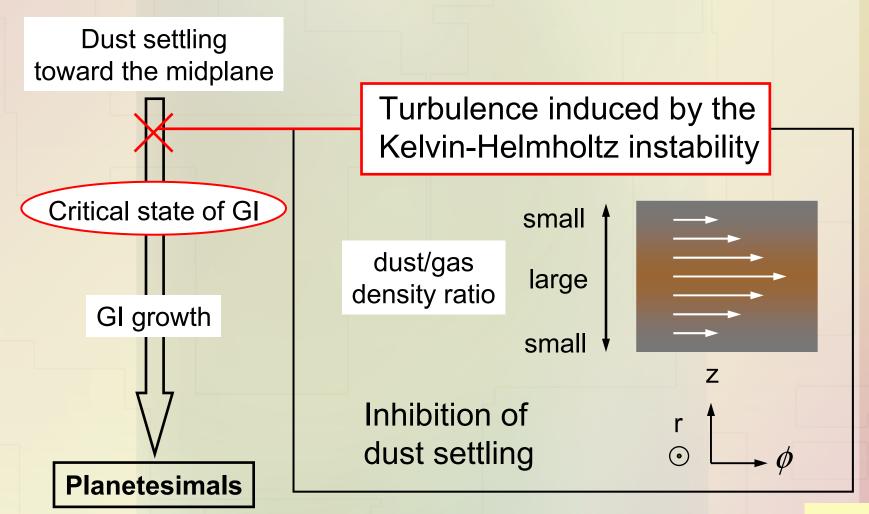
Analytical Calculation

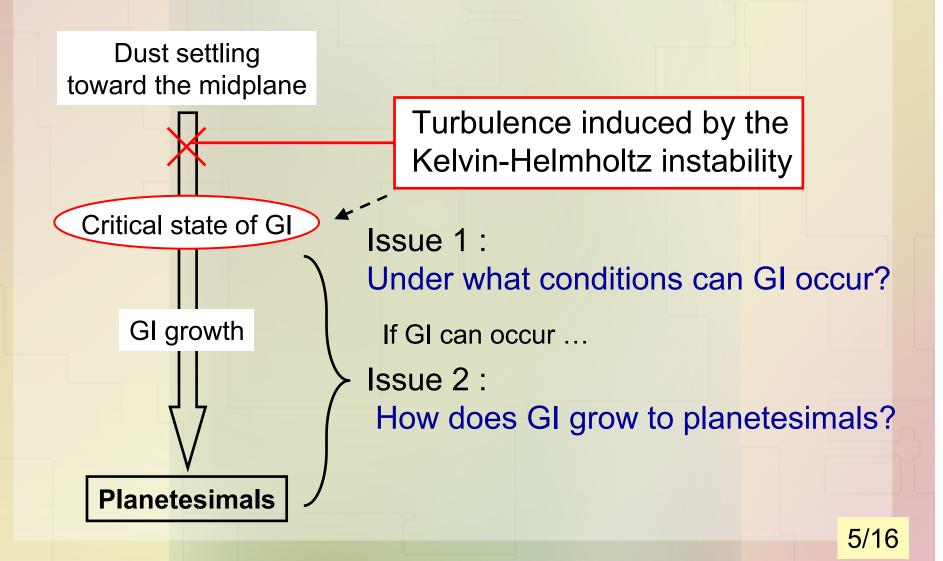
3. Summary

Introduction --- How are planetesimals formed?



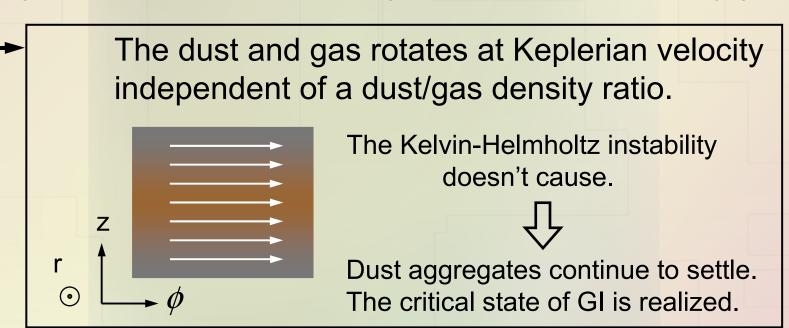






Three conditions to cause GI

- 1. Dust growth to ~10 m (Weidenschilling 1980)
 - Inhibition by a dispersion of radial velocities (Weidenschilling 1995)
- 2. Supersolar dust/gas surface density ratios (Sekiya 1998)
- 3. Region where the radial pressure gradient at equilibrium is negligible



Three conditions to cause GI

- 1. Dust growth to ~10 m (Weidenschilling 1980)
 - Inhibition by a dispersion of radial velocities (Weidenschilling 1995)
- 2. Supersolar dust/gas surface density ratios (Sekiya 1998)
- 3. Region where the radial pressure gradient at equilibrium is negligible

We adopt the third condition and perform hydrodynamic numerical simulations of how does GI grow to several times the critical density.

Our Study --- Model assumptions and settings

Assumptions

- No global turbulence
- Axisymmetric dust layer
- A constant gas friction time: $Ω_K t_f = 0.01$ or $Ω_K t_f = 0.1$ $Ω_K$: Keplerian angular velocity, t_f : gas friction time
- The Gaussian dust density distribution

Settings

- Two fluids consisting of dust fluid and gas
- Local Cartesian coordinate system

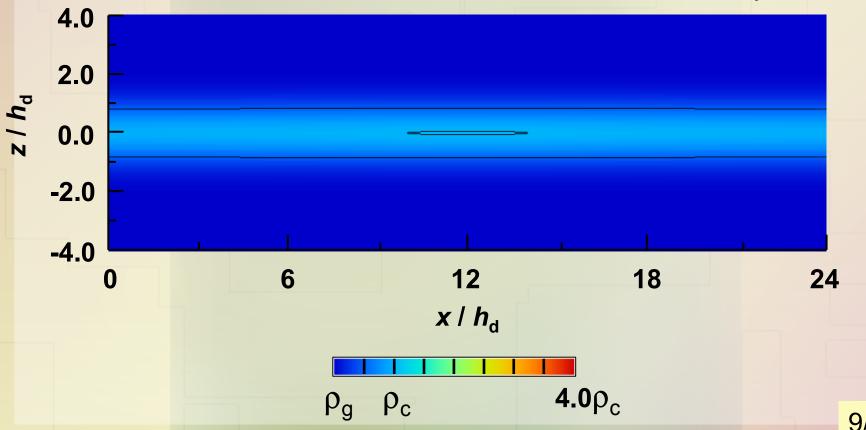
Case 1 : $\Omega_{K}t_{f} = 0.01$

 $\Omega_{\rm K}$ t = 0.0

 ρ_g : gas density

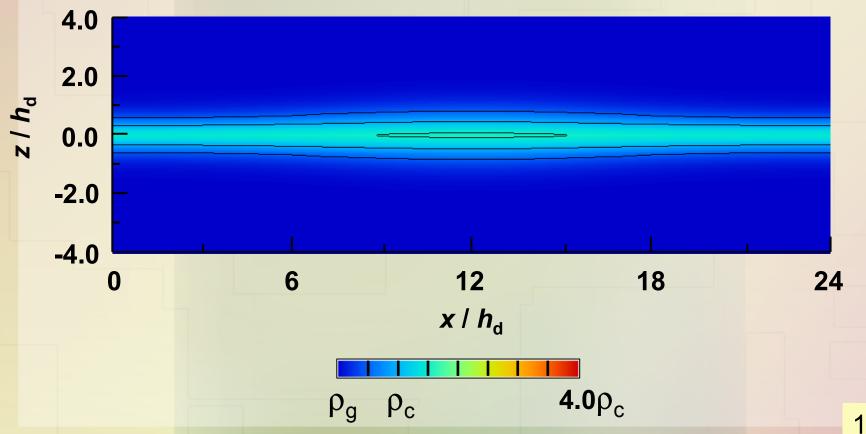
 ρ_c : critical density of GI h_d : scale height of

the dust layer

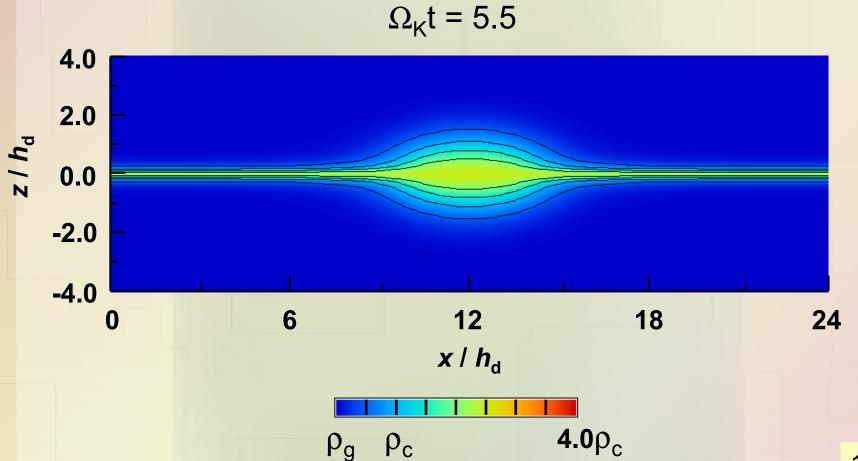


Case 1 : $\Omega_{K}t_{f} = 0.01$

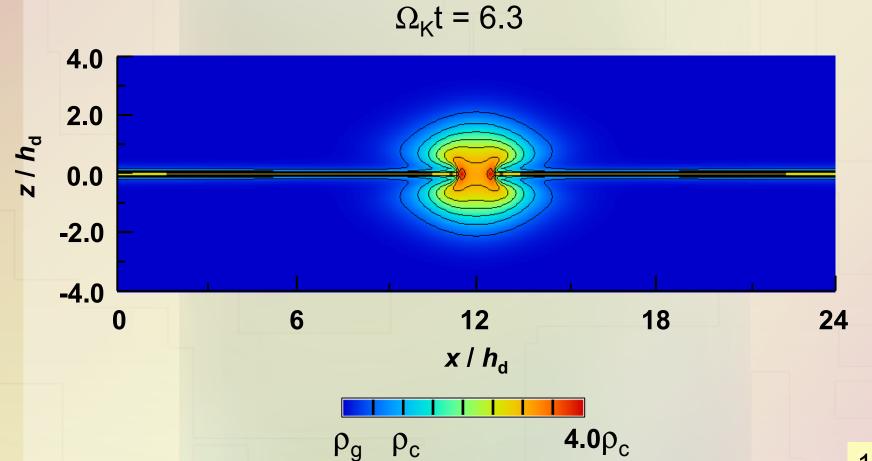
$$\Omega_{\rm K}$$
t = 3.0



Case 1 : $\Omega_{K}t_{f} = 0.01$

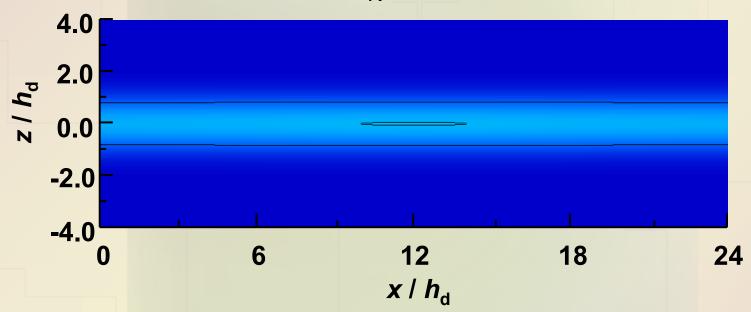


Case 1 : $\Omega_{K}t_{f} = 0.01$



Case 2 :
$$\Omega_{K}t_{f} = 0.1$$

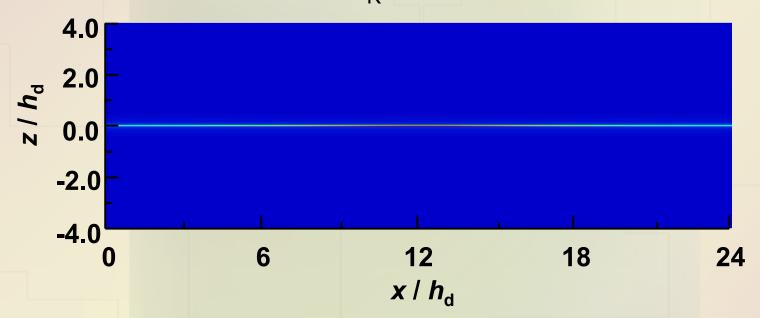
$$\Omega_{\rm K}$$
t = 0.0



Density distribution: the same as the case of 0.01 Dust settling velocity: ten times the case of 0.01

Case 2 :
$$\Omega_{K}t_{f} = 0.1$$

$$\Omega_{\rm K}$$
t = 0.95



GI does not seem to grow, at least until twenty times the critical density.

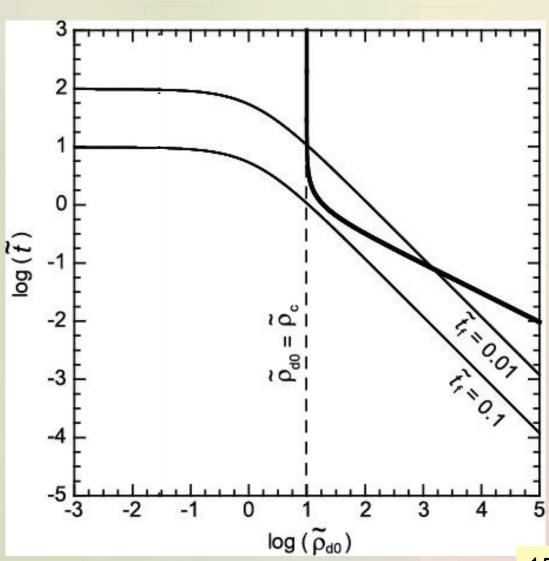
Our Study

--- Results of an analytical calculation

Dust settling time
(thin lines)
vs.
Growth time of GI
(thick line)

If
$$\Omega_{\rm K} t_{\rm f} = 0.1$$
,

Dust settling time is shorter than growth time of GI in all dust densities



Tilde denotes nondimensional values

15/16

Summary

--- see also Yamoto & Sekiya, ApJ, 646, L155

$$\Omega_{\rm K} t_{\rm f} = 0.01$$

Gravitational instability grows faster than dust settling.

$$\Omega_{\rm K} t_{\rm f} = 0.1$$

Dust aggregates settle before gravitational instability grows, regardless of the dust density, and the dust layer will become extremely thin.

Future works

- Nonaxisymmetric (3D) numerical simulations
- Simulations under the conditions:
 Different sizes of dust aggregates
 Supersolar dust/gas surface density ratios

Thank you for your attention.

Gas friction time

$$t_f = \frac{m V}{F_d}$$

m: dust mass

V: velocity relative to the gas

F_d: drag force

For spherical dust particles

$$\Omega_{K}t_{f} = 0.01$$
 \longrightarrow a = 4 cm, $\rho_{s} = 1$ g/cm³ at 1 AU (Epstein drag regime)

$$Ω_K t_f = 0.1$$
 \longrightarrow a = 13 cm, $ρ_s = 1$ g/cm³ at 1 AU (Stokes drag regime)

Gas

Incompressibility condition

$$\nabla \cdot \mathbf{v}_{g} = 0$$

Equation of motion

Tidal force

$$\mathbf{\Omega} = (0, 0, \Omega_{K})$$

$$\frac{\partial \mathbf{v}_{\mathrm{g}}}{\partial t} + (\mathbf{v}_{\mathrm{g}} \cdot \nabla) \mathbf{v}_{\mathrm{g}} = \begin{bmatrix} -\frac{1}{\rho_{\mathrm{g}}} \nabla P_{\mathrm{g}} \\ -\frac{1}{\rho_{\mathrm{g}}} \nabla P_{\mathrm{g}} \end{bmatrix} + \begin{bmatrix} 3\Omega_{\mathrm{K}}^{2} x \\ 0 \\ -\Omega_{\mathrm{K}}^{2} z \end{bmatrix}$$
force
$$\begin{bmatrix} -2\Omega \times \mathbf{v}_{\mathrm{g}} \\ -2\Omega \times \mathbf{v}_{\mathrm{g}} \end{bmatrix} - \nabla \psi + \begin{bmatrix} \rho_{\mathrm{d}} & \mathbf{v}_{\mathrm{d}} - \mathbf{v}_{\mathrm{g}} \\ \rho_{\mathrm{g}} & t_{\mathrm{f}} \end{bmatrix}$$
Self-gravity

Dust

Gas pressure gradient force Central star's gravity force

force

Back-reaction of gas drag force

Equation of continuity

Equation of motion

$$\frac{\partial \rho_{d}}{\partial t} + \nabla \cdot (\rho_{d} \mathbf{v}_{d}) = 0$$

$$\frac{\partial \mathbf{v}_{d}}{\partial t} + (\mathbf{v}_{d} \cdot \nabla) \mathbf{v}_{d} = \begin{pmatrix} 3\Omega_{K}^{2} x \\ 0 \\ -\Omega_{K}^{2} z \end{pmatrix} - 2\mathbf{\Omega} \times \mathbf{v}_{d} - \nabla \psi + \frac{\mathbf{v}_{g} - \mathbf{v}_{d}}{t_{f}}$$
 Gas drag force

Poisson equation of self-gravitational potential

$$\nabla^2 \psi = 4\pi G \left(\rho_{\rm g} + \rho_{\rm d} \right)$$